Desch-schappacher Perturbation of One-parameter Semigroups on Locally Convex Spaces
نویسنده
چکیده
We prove a Desch-Schappacher type perturbation theorem for strongly continuous and locally equicontinuous one-parameter semigroups which are defined on a sequentially complete locally convex space.
منابع مشابه
On perturbations preserving the immediate norm continuity of semigroups
We show that the Desch–Schappacher perturbation and the Miyadera–Voigt perturbation of an immediately norm continuous semigroup are immediately norm continuous. We also show that a perturbation theorem of C. Batty, C. Kaiser and L. Weis based on a generation theorem of A.M. Gomilko, D.-X. Feng and D.-H. Shi also preserves the immediate norm continuity of semigroups. The novelty of these results...
متن کاملStability Analysis in Continuous and Discrete Time, using the Cayley Transform
For semigroups and for bounded operators we introduce the new notion of Bergman distance. Systems with a finite Bergman distance share the same stability properties, and the Bergman distance is preserved under the Cayley transform. This way, we get stability results in continuous and discrete time. As an example, we show that bounded perturbations lead to pairs of semigroups with finite Bergman...
متن کاملPerturbations of Existence Families for Abstract Cauchy Problems
In this paper, we establish Desch-Schappacher type multiplicative and additive perturbation theorems for existence families for arbitrary order abstract Cauchy problems in a Banach space: u(n)(t) = Au(t) (t ≥ 0); u(j)(0) = xj (0 ≤ j ≤ n− 1). As a consequence, we obtain such perturbation results for regularized semigroups and regularized cosine operator functions. An example is also given to ill...
متن کاملOn a Theorem of Zabczyk for Semigroups of Operators in Locally Convex Spaces
The purpose of this paper is to extend a stability theorem of Zabczyk to the case of semigroups of operators in locally convex topological vector spaces. Obtained results generalize the similar theorems proved by Datko, Pazy, Rolewicz and Littman for the case of C0-semigroups of operators in Banach spaces. AMS Mathematics Subject Classification (2000): 34D05,34D20
متن کاملOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کامل